"

Visual Fields

Diagram of the visual fields.

Both your right and left eye receive photons emanating from a single point in visual space, in most cases. There is a small area of vision that only activates photoreceptors in the right eye because it is blocked by your nose and a small area of vision that only activates receptors in the left eye for the same reason. These two symmetrical areas, which activate only one eye, are called the monocular crescents because of their shape and characteristics.

For every other location in the visual world, any point is represented twice. You can confirm this by looking at something more-or-less in front of you and covering one eye at a time. Its position seems to shift slightly (more about this later) but it’s still there.

The retina nearest the nose is called the nasal retina and the retina nearest the temples is called the temporal retina. The dividing line between nasal and temporal retina is the midpoint, or bottom, of the foveal pit.

Points in visual space to the left of the midline are represented in the nasal retina of the left eye and in the temporal retina of the right eye.

Points in visual space to the right of the midline are represented in the temporal retina of the left eye and in the nasal retina of the right eye.

For reasons that will soon become clear, it’s important that the LGN and visual cortex on one side contains a complete representation of the opposite side of the world. Thus, we need to join the axons coming from the left nasal retina with axons coming from the right temporal retina. These axons will all go to the right LGN.

Similarly, we need to join axons coming from the left temporal retina with axons coming from the right nasal retina and send them all to the left LGN.

This sorting process occurs at the optic chiasm. Axons from the left nasal retina cross the midline. Axons from the right nasal retina cross the midline. Axons from the temporal retina stay on the same side.

Diagram showing how bitemporal hemianopsia arises.

If a lesion, such as a tumor of the pituitary gland, disrupts only the crossing fibers (i.e. if it lies in the center of the optic chiasm), then only the temporal retinal axons can send information to the brain. These retinal axons convey information from the nasal world on both sides. Because we can only observe what is going on with the visual fields, not what is going on with the fibers themselves, a phenomenon known as bitemporal hemianopsia (“two temples half not seeing”) results. Information from the temporal world, which is carried by nasal ganglion cell axons, is no longer able to be transmitted to the brain and is not consciously perceived.

License

Icon for the Creative Commons Attribution-ShareAlike 4.0 International License

Introduction to Neuroscience Copyright © by Jim Hutchins; Lindsey Aune; and Rachel Jessop is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License, except where otherwise noted.