"

45 Using Light Energy to Make Organic Molecules

Jung Choi; Mary Ann Clark; and Matthew Douglas

Learning Objectives

By the end of this section, you will be able to do the following:

  • Describe the Calvin cycle
  • Define carbon fixation
  • Explain how photosynthesis works in the energy cycle of all living organisms

After the energy from the sun is converted into chemical energy and temporarily stored in ATP and NADPH molecules, the cell has the fuel needed to build carbohydrate molecules for long-term energy storage. The products of the light-dependent reactions, ATP and NADPH, have lifespans in the range of millionths of seconds, whereas the products of the light-independent reactions (carbohydrates and other forms of reduced carbon) can survive almost indefinitely. The carbohydrate molecules made will have a backbone of carbon atoms. But where does the carbon come from? It comes from carbon dioxide—the gas that is a waste product of respiration in microbes, fungi, plants, and animals.

The Calvin Cycle

In plants, carbon dioxide (CO2) enters the leaves through stomata, where it diffuses over short distances through intercellular spaces until it reaches the mesophyll cells. Once in the mesophyll cells, CO2 diffuses into the stroma of the chloroplast—the site of light-independent reactions of photosynthesis. These reactions actually have several names associated with them. Another term, the Calvin cycle, is named for the man who discovered it, and because these reactions function as a cycle. Others call it the Calvin-Benson cycle to include the name of another scientist involved in its discovery. The most outdated name is “dark reaction,” because light is not directly required (Figure 8.18). However, the term dark reaction can be misleading because it implies incorrectly that the reaction only occurs at night or is independent of light, which is why most scientists and instructors no longer use it.

 
This illustration shows that A T P and N A D P H produced in the light reactions are used in the Calvin cycle to make sugar.
Figure 8.18 Light reactions harness energy from the sun to produce chemical bonds, ATP, and NADPH. These energy-carrying molecules are made in the stroma where carbon fixation takes place. Credit: Rao, A., Ryan, K., Tag, A., Fletcher, S. and Hawkins, A. Department of Biology, Texas A&M University.

The light-independent reactions of the Calvin cycle can be organized into three basic stages: fixation, reduction, and regeneration.

Stage 1: Fixation

In the stroma, in addition to CO2, two other components are present to initiate the light-independent reactions: an enzyme called ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO), and three molecules of ribulose bisphosphate (RuBP), as shown in Figure 8.19. RuBP has five atoms of carbon, flanked by two phosphates.

Visual Connection

 
A diagram of the Calvin cycle is shown with its three stages: carbon fixation, 3 dash P G A reduction, and regeneration of upper case R lower case u upper case B upper case P. In stage 1, the enzyme upper R lower u upper B lower i lower s upper C upper O adds a carbon dioxide to the five-carbon molecule upper R lower u upper B upper P, producing two three-carbon 3 dash PGA molecules. In stage 2, two N A D P H and two A T P are used to reduce 3 dash PGA to G A 3 P. In stage 3 upper R lower u upper B upper P is regenerated from G A 3 P. One A T P is used in the process. Three complete cycles produces one new G A 3 P, which is shunted out of the cycle and made into glucose, whose moledular formula is upper C subscript 6 baseline upper H subscript 12 baseline upper O subscript 6 baseline.
Figure 8.19 The Calvin cycle has three stages. In stage 1, the enzyme RuBisCO incorporates carbon dioxide into an organic molecule, 3-PGA. In stage 2, the organic molecule is reduced using electrons supplied by NADPH. In stage 3, RuBP, the molecule that starts the cycle, is regenerated so that the cycle can continue. Only one carbon dioxide molecule is incorporated at a time, so the cycle must be completed three times to produce a single three-carbon G3P molecule, and six times to produce a six-carbon glucose molecule. Credit: Rao, A., Ryan, K., Tag, A., Fletcher, S. and Hawkins, A. Department of Biology, Texas A&M University.

 

Which of the following statements is true?

  1. In photosynthesis, oxygen, carbon dioxide, ATP, and NADPH are reactants. G3P and water are products.
  2. In photosynthesis, chlorophyll, water, and carbon dioxide are reactants. G3P and oxygen are products.
  3. In photosynthesis, water, carbon dioxide, ATP, and NADPH are reactants. RuBP and oxygen are products.
  4. In photosynthesis, water and carbon dioxide are reactants. G3P and oxygen are products.

RuBisCO catalyzes a reaction between CO2 and RuBP. For each CO2 molecule that reacts with one RuBP, two molecules of another compound 3-phospho glyceric acid (3-PGA) form. PGA has three carbons and one phosphate. Each turn of the cycle involves only one RuBP and one carbon dioxide and forms two molecules of 3-PGA. The number of carbon atoms remains the same, as the atoms move to form new bonds during the reactions (3 C atoms from 3CO2 + 15 C atoms from 3RuBP = 18 C atoms in 6 molecules of 3-PGA). This process is called carbon fixation, because CO2 is “fixed” from an inorganic form into organic molecules.

Stage 2: Reduction

ATP and NADPH are used to convert the six molecules of 3-PGA into six molecules of a chemical called glyceraldehyde 3-phosphate (G3P). That is a reduction reaction because it involves the gain of electrons by 3-PGA. (Recall that a reduction is the gain of an electron by an atom or molecule.) Six molecules of both ATP and NADPH are used. For ATP, energy is released with the loss of the terminal phosphate atom, converting it into ADP; for NADPH, both energy and a hydrogen atom are lost, converting it into NADP+. Both of these molecules return to the nearby light-dependent reactions to be reused and re-energized.

Stage 3: Regeneration

Interestingly, at this point, only one of the G3P molecules leaves the Calvin cycle and is sent to the cytoplasm to contribute to the formation of other compounds needed by the plant. Because the G3P exported from the chloroplast has three carbon atoms, it takes three “turns” of the Calvin cycle to fix enough net carbon to export one G3P. But each turn makes two G3Ps, thus three turns make six G3Ps. One is exported while the remaining five G3P molecules remain in the cycle and are used to regenerate RuBP, which enables the system to prepare for more CO2 to be fixed. Three more molecules of ATP are used in these regeneration reactions.

Link to Learning

This link leads to an animation of photosynthesis and the Calvin cycle.

Evolution Connection

Photosynthesis

During the evolution of photosynthesis, a major shift occurred from the bacterial type of photosynthesis that involves only one photosystem and is typically anoxygenic (does not generate oxygen) into modern oxygenic (does generate oxygen) photosynthesis, employing two photosystems. This modern oxygenic photosynthesis is used by many organisms—from giant tropical leaves in the rainforest to tiny cyanobacterial cells—and the process and components of this photosynthesis remain largely the same. Photosystems absorb light and use electron transport chains to convert energy into the chemical energy of ATP and NADH. The subsequent light-independent reactions then assemble carbohydrate molecules with this energy.

In the harsh dry heat of the desert, plants must conserve and use every drop of water to survive. Because stomata must open to allow for the uptake of CO2, water escapes from the leaf during active photosynthesis. Desert plants have evolved processes to conserve water and deal with harsh conditions. Mechanisms to capture and store CO2 allows plants to adapt to living with less water. Some plants such as cacti (Figure 8.20) can prepare materials for photosynthesis during the night by a temporary carbon fixation/storage process, because opening the stomata at this time conserves water due to cooler temperatures. During the day, cacti use the captured CO2 for photosynthesis and keep their stomata closed.

 

This photo shows short, round prickly cacti growing in cracks in a rock.
Figure 8.20 The harsh conditions of the desert have led plants like these cacti to evolve variations of the light-independent reactions of photosynthesis. These variations increase the efficiency of water usage, helping to conserve water and energy. (credit: Piotr Wojtkowski)

The Energy Flow

Whether the organism is a bacterium, plant, or animal, all living things access energy by breaking down carbohydrate and other carbon-rich organic molecules. But if plants make carbohydrate molecules, why would they need to break them down, especially when it has been shown that the gas organisms release as a “waste product” (CO2) acts as a substrate for the formation of more food in photosynthesis? Remember, living things need energy to perform life functions. In addition, an organism can either make its own food or eat another organism—either way, the food still needs to be broken down. Finally, in the process of breaking down food, called cellular respiration, heterotrophs release needed energy and produce “waste” in the form of CO2 gas.

However, in nature, there is no such thing as “waste.” Every single atom of matter and energy is conserved, recycled over and over infinitely. Substances change form or move from one type of molecule to another, but their constituent atoms never disappear (Figure 8.22).

In reality, CO2 is no more a form of waste than oxygen is wasteful to photosynthesis. Both are byproducts of reactions that move on to other reactions. Photosynthesis absorbs light energy to build carbohydrates in chloroplasts, and aerobic cellular respiration releases energy by using oxygen to metabolize carbohydrates in the cytoplasm and mitochondria. Both processes use electron transport chains to capture the energy necessary to drive other reactions. These two powerhouse processes, photosynthesis and cellular respiration, function in biological, cyclical harmony to allow organisms to access life-sustaining energy that originates millions of miles away in a burning star humans call the sun.

 
Light energy enters a chloroplast and is converted to A T P. The A T P enters a process to reduce C O 2 to sugars. On the other side of the image, the sugars enter th citric acid cycle. They give off C O 2. Then, oxidative phosphorylation consumes O 2 and A T P is produced. Metabolites are given off.
Figure 8.21 Connection between Photosynthesis and Respiration Photosynthesis in chloroplasts is the process by which light energy is converted to chemical energy and stored in sugars. Initially, the light energy is converted into chemical energy during ATP synthesis in a process that gives off oxygen. The energy in ATP is then used to reduce CO2 to simple sugars. In contrast, cellular respiration is the process in which the chemical energy stored in sugars is converted into ATP, a source of chemical energy that can be used by the rest of the cell. In the process of converting the energy stored in the sugars to ATP, CO2 is released and oxygen is consumed. Credit: Rao, A., Ryan, and Tag, A. Department of Biology, Texas A&M University.
 
This photograph shows a giraffe eating leaves from a tree. Labels indicate that the giraffe consumes oxygen and releases carbon dioxide, whereas the tree consumes carbon dioxide and releases oxygen.
Figure 8.22 Photosynthesis consumes carbon dioxide and produces oxygen. Aerobic respiration consumes oxygen and produces carbon dioxide. These two processes play an important role in the carbon cycle. (credit: modification of work by Stuart Bassil)

License

Icon for the Creative Commons Attribution 4.0 International License

Using Light Energy to Make Organic Molecules Copyright © by Jung Choi; Mary Ann Clark; and Matthew Douglas is licensed under a Creative Commons Attribution 4.0 International License, except where otherwise noted.