"

156 Environmental Sociology

Lumen Learning

Learning Outcomes

  • Explain climate change and its consequences
  • Understand the challenges presented by pollution, garbage, e-waste, and toxic hazards

The subfield of environmental sociology studies the way humans interact with their environments. This field is closely related to human ecology, which focuses on the relationship between people and their built and natural environments. This is an area that is garnering more attention as extreme weather patterns and policy battles over climate change dominate the news. A key factor of environmental sociology is the concept of carrying capacity, which describes the maximum amount of life that can be sustained within a given area. While this concept can refer to grazing lands or to rivers, we can also apply it to the earth as a whole.

Climate Change

While you might be more familiar with the phrase “global warming,” climate change is the term now used to refer to long-term shifts in temperatures due to human activity and, in particular, the release of greenhouse gases into the environment. The planet as a whole is warming, but the term climate change acknowledges that the short-term variations in this process can include both higher and lower temperatures, despite the overarching trend toward warmth.

Climate change is a deeply controversial subject, despite decades of scientific research and a high degree of scientific consensus that supports its existence. For example, according to NASA scientists, 2013 tied with 2009 and 2006 as the seventh-warmest year since 1880, continuing the overall trend of increasing worldwide temperatures (NASA 2014). More recently, NASA scientists have noted that 2015 surface temperatures were the warmest ever seen since we began keeping records in 1880.[1]One effect of climate change is more extreme weather. There are increasingly more record-breaking weather phenomena, from the number of Category 4 hurricanes to the amount of snowfall in a given winter. These extremes, while they make for dramatic television coverage, can cause immeasurable damage to crops, property, and even lives. In May 2019, the United Nations’ Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) released a report explaining how tens of thousands of plant and animal species are in jeopardy of losing their habitats and becoming extinct due to urbanization, deforestation, overfishing, burning fossil fuels, pollution, and through invasive alien plant and animal species. If the world continues to warm at its current pace, even another 0.9 degrees Fahrenheit (0.5 degrees Celsius) will cause coral reefs to dwindle by 70-90%, which will have severe consequences for other plant and animal lives.[2]

So why is there a controversy? The National Oceanographic and Atmospheric Association (NOAA) recognizes the existence of climate change (as do the scientists at NASA, along with all of America’s intelligence agencies–who consider climate change to be matter of national security). Climate change is also quite real to the 192 countries that signed the Kyoto Protocol, a document intended to engage countries in voluntary actions to limit the activity that leads to climate change. The United States signed the document in 1998 during the Clinton administration, but it has not subsequently been submitted to the Senate for ratification. What’s the argument about? For one thing, for companies making billions of dollars in the production of goods and services, the idea of costly regulations that would require expensive operational upgrades has been a source of anxiety. They argue via lobbyists that such regulations would be disastrous for the economy. Some go so far as to question the overwhelming consensus cited by environmental scientists. There is also a lot of finger-pointing between countries, especially when the issue arises of who will be permitted to pollute and at what levels.

Pollution

Pollution describes what happens when contaminants are introduced into an environment (water, air, land) at levels that are damaging. Environments can often sustain a limited amount of contaminants without marked change, and water, air, and soil can “heal” themselves to a certain degree. However, once contaminant levels reach a certain point, the results can be catastrophic.

Water

Typhoid, cholera, and diarrhea from unsafe water kill hundreds of thousands of children each year, and over 160 million children suffer from malnutrition and growth issues due to water issues. An estimated 3 billion people do not have access to clean water at home for hand-washing (CDC 2016). Consider the impact of that, knowing that many of those without water for hand-washing live in agricultural societies in which they work with animals or live in cities with many other people.

As every child learns in school, 70 percent of earth is made of water. Despite that figure, there is a finite amount of water usable by humans and it is constantly used and reused in a sustainable water cycle. The way we use this abundant natural resource, however, renders much of it unsuitable for consumption and unable to sustain life. Oil and natural gas production, discussed at the beginning of the chapter, require so much water that there’s no safe place to put the wastewater other than deep underground. But more common activities use far more water than many people understand. The immense amount of water to produce almonds (8 percent of California’s water supply, equating to roughly one gallon per individual almond) has made headlines, as have the 37 gallons that it takes to produce a cup of coffee. But all crops and livestock have a “water footprint.” Dairy milk is actually known to take more water to produce than does almond milk, for example. And steak may take up to 900 gallons of water to produce (WaterCalculuator.org 2020).

Those water costs are important to consider, particularly if the crops are produced in a part of the world where access to safe water is also an issue. But reducing irrigation water usage for U.S. crops would have very limited effects in sub-Saharan Africa. Most experts focus on improving water quality and sanitation in general, as well as reducing the distance people need to travel in order to obtain safe water.

Water pollution has always been a byproduct of industrialization, increased population, and urbanization. Cleveland’s Cuyahoga River caught fire several times due to pollution, and was part of what inspired the United States’ turn to cleaner water. Other countries are currently undergoing the same crises. As a consequence of population concentrations, water close to human settlements is frequently polluted with untreated or partially treated human waste (sewage), chemicals, radioactivity, and levels of heat sufficient to create large “dead zones” incapable of supporting aquatic life. The methods of food production used by many core nations rely on liberal doses of nitrogen and pesticides, which end up back in the water supply. In some cases, water pollution affects the quality of the aquatic life consumed by water and land animals. As we move along the food chain, the pollutants travel from prey to predator. Since humans consume at all levels of the food chain, we ultimately consume the carcinogens, such as mercury, accumulated through several branches of the food web.

Soil

Soil erosion and desertification are just two of the many forms of soil pollution. In addition, all the chemicals and pollutants that harm our water supplies can also leach into soil with similar effects. Brown zones where nothing can grow are common results of soil pollution. One demand the population boom makes on the planet is a requirement for more food to be produced. The so-called “Green Revolution” in the 1960s saw chemists and world aid organizations working together to bring modern farming methods, complete with pesticides, to developing countries. The immediate result was positive: food yields went up and burgeoning populations were fed. But as time has gone on, these areas have fallen into even more difficult straits as the damage done by modern methods leave traditional farmers with less than they had to start.

Garbage

A pile of garbage and grasses is shown here.
Figure 2. Where should garbage go when you’ve run out of room? This is a question that is increasingly pressing the planet. (Photo courtesy of Kevin Krejci/flickr)

Where is your last cell phone? What about the one before that? Or the huge old television set your family had before flat screens became popular? For most of us, the answer is a sheepish shrug. We don’t pay attention to the demise of old items, and since electronics drop in price and increase in innovation at an incredible clip, we have been trained by their manufacturers to upgrade frequently.

Garbage creation and control are major issues for most core and industrializing nations, and it is quickly becoming one of the most critical environmental issues faced in the United States. People in the United States buy products, use them, and then throw them away. Did you dispose of your old electronics according to government safety guidelines? Chances are good you didn’t even know there are guidelines. Multiply your electronics times a few million, take into account the numerous toxic chemicals they contain, and then imagine either burying those chemicals in the ground or lighting them on fire.

Those are the two primary means of waste disposal in the United States: landfill and incineration. When it comes to getting rid of dangerous toxins, neither is a good choice. Styrofoam and plastics that many of us use every day do not dissolve in a natural way. Burn them, and they release carcinogens into the air. Their improper incineration (intentional or not) adds to air pollution and increases smog. Dump them in landfills, and they do not decompose. As landfill sites fill up, we risk an increase in groundwater contamination.

Air

Humanity, with its growing numbers, use of fossil fuels, and increasingly urbanized society, is putting stress on the earth’s atmosphere. The amount of air pollution varies from locale to locale, and you may be more personally affected than you realize. How often do you check air quality reports before leaving your house? Depending on where you live, this question can sound utterly strange or like an everyday matter. Along with oxygen, most of the time we are also breathing in soot, hydrocarbons, carbon, nitrogen, and sulfur oxides.

Much of the pollution in the air comes from human activity. How many college students move their cars across campus at least once a day? Who checks the environmental report card on how many pollutants each company throws into the air before purchasing a cell phone? Many of us take our environment for granted without concern for how everyday decisions add up to a long-term global problem. How many minor adjustments can you think of, like walking instead of driving, that would reduce your overall carbon footprint?

Each of us is affected by air pollution. But like the herder who adds one more head of cattle to realize the benefits of owning more cows but who does not have to pay the price of the overgrazed land, we take the benefit of driving or buying the latest cell phones without worrying about the end result. Air pollution accumulates in the body, much like the effects of smoking cigarettes accumulate over time, leading to more chronic illnesses. And in addition to directly affecting human health, air pollution affects crop quality as well as heating and cooling costs. In other words, we all pay a lot more than the price at the pump when we fill up our tank with gas.

Toxic and Radioactive Waste

Radioactivity is a form of air pollution. While nuclear energy promises a safe and abundant power source, increasingly it is looked upon as a danger to the environment and to those who inhabit it. We accumulate nuclear waste, which we must then keep track of long term and ultimately figure out how to store the toxic waste material without damaging the environment or putting future generations at risk.

The 2011 earthquake in Japan illustrates the dangers of even safe, government-monitored nuclear energy. When disaster occurs, how can we safely evacuate the large numbers of affected people? Indeed, how can we even be sure how far the evacuation radius should extend? Radiation can also enter the food chain, causing damage from the bottom (phytoplankton and microscopic soil organisms) all the way to the top.

Think It Over

  • After reading this section, will you change the way you treat your household waste? Explain.
  • How do you think the issue of e-waste should be dealt with? Should the responsibility fall to the companies that make the products or the consumer who buys them? Would your buying habits be different if you had to pay to recycle old electronics?

glossary

climate change:
long-term shifts in temperature and climate due to human activity
environmental sociology:
the sociological subfield that addresses the relationship between humans and the environment
e-waste:
the disposal of broken, obsolete, and worn-out electronics
pollution:
the introduction of contaminants into an environment at levels that are damaging

  1. NASA (January 2016). NOAA Analyses Reveal Record-Shattering Global Warm Temperatures in 2015. Retrieved from https://www.nasa.gov/press-release/nasa-noaa-analyses-reveal-record-shattering-global-warm-temperatures-in-2015.
  2. Borenstein, Seth. UN report: Humans accelerating extinction of species. Associated Press. Retrieved from https://www.apnews.com/aaf1091c5aae40b0a110daaf04950672.

License

Icon for the Creative Commons Attribution 4.0 International License

Environmental Sociology Copyright © by Lumen Learning is licensed under a Creative Commons Attribution 4.0 International License, except where otherwise noted.