Neurotransmitters: Acetylcholine
Jim Hutchins
This chapter is a work in progress. To participate in the writing or editing of this chapter, contact the author: jimhutchins@weber.edu
The Cholinergic Synapse
Much of what we know about chemical synapses was first discovered when scientists studied the cholinergic synapse. Acetylcholine (ACh) was first synthesized in 1867. In 1906, Hunt and Taveau showed that extremely dilute preparations of ACh stop the heart and lungs. Sir Henry Dale, working in the Wellcome pharmaceutical labs, showed that a mushroom extract (muscarine) and a tobacco extract (nicotine) acted on nerve cells, but that ACh was even stronger in evoking the same effects. Otto Loewi’s mysterious and powerful Vagusstoff, discovered in 1921, was then shown to be ACh. Over the next 40 years, a leech muscle preparation treated with a compound (eserine) which inhibited the destruction of ACh was the standard technique for measuring the action of ACh and related compounds. The neuromuscular junction, where ACh is released onto muscle cells, was extensively studied by physiologists; the quantal release of neurotransmitter was extensively characterized at this synapse. Because of a quirk of biology (described below), scientists were able to isolate the ACh receptor protein in large quantities before the biochemical properties of any other neurotransmitter receptor were well-characterized. Indigenous peoples have used drugs which alter the function of the cholinergic synapse for millenia, and European military scientists discovered nerve agents which also affect synaptic transmission at the cholinergic synapse.
Choline Uptake is the Rate-Limiting Step in Acetylcholine Synthesis
The first step in the production and release of acetylcholine is choline uptake by the high-affinity choline transporter, also known as solute carrier family 5 member 7, or by its gene name, SLC5A7. Choline is in short supply in the body and this is the rate-limiting step in acetylcholine synthesis and release.
Synthesis of Acetylcholine
Acetic acid exists mostly as acetate ion (acetic acid minus a hydrogen ion, H+) at physiological pH. This combines with the nitrogen-containing compound choline to form acetylcholine with the removal of a water molecule (i.e. a dehydration synthesis reaction). This reaction is catalyzed by the enzyme choline acetyltransferase (ChAT).
Packaging of Acetylcholine into Vesicles
Like other neurotransmitters, the packaging of acetylcholine into vesicles is a two-step process.
First, a proton pump which concentrates protons against their concentration gradient is used to reduce the pH inside the vesicle. This requires energy in the form of ATP. Now the vesicle has a much higher concentration of protons than the surrounding cytoplasm.
In the next step, the protons are used to drive an antiport (exchanger) protein, the vesicular acetylcholine transporter (vAChT). This transport protein uses the hydrogen ion gradient to drive the movement of acetylcholine into the vesicle as it allows H+ to flow down its concentration gradient and into the cytoplasm.

The vAChT is member 3 of solute carrier family 18, so the gene is designated SLC18A3. The SLC18A3 gene is located within the first intron of the choline acetyltransferase gene. In other words, the regulatory regions of both the ChAT and vAChT genes are bound by the same transcription factors, so they are turned on or off at the same time. The vAChT gene, SLC18A3, is cleaved out of the pre-mRNA for ChAT by the spliceosome and then becomes the mRNA for vAChT.
Release of Acetylcholine
The neuromuscular junction is a cholinergic synapse that has been used as a model system for the chemical synapse for the last century. Thus, the vesicular release of acetylcholine has been covered in other chapters covering the canonical chemical synapse and quantal release of neurotransmitter.
Binding of Acetylcholine to Receptors
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Fusce nec tincidunt magna, id convallis mauris. Mauris sem tortor, varius non tellus a, pulvinar pulvinar nisl. Pellentesque lobortis, est posuere pulvinar vehicula, augue tellus finibus neque, ut congue mauris ex at metus. Donec ornare nisi bibendum, ornare erat ac, cursus erat. Suspendisse rhoncus, nibh ac suscipit blandit, est est ullamcorper lectus, eu pharetra elit quam eu risus. Interdum et malesuada fames ac ante ipsum primis in faucibus. Donec eu pellentesque tellus. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Curabitur efficitur libero et justo pharetra sodales. Duis rhoncus egestas viverra. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia curae; Fusce eros sem, posuere non mi sit amet, ornare mattis lorem. Maecenas at risus interdum, commodo ligula ac, convallis quam. Curabitur auctor, leo et eleifend interdum, lacus lacus sagittis lectus, sit amet imperdiet ligula libero quis dolor.
Two Different Pharmacological Types of Acetylcholine Receptor Types Were Found
Dale and other physiologists of the early 20th century systematically characterized the pharmacology of the cholinergic synapse using a variety of naturally-occurring and synthesized compounds. Even before the concept of a neurotransmitter receptor had been formulated, these studies identified two categories of receptor:
- those that respond to ACh but only to the agonist nicotine;
- those that respond to ACh but only to muscarine as an agonist.
Thus, Dale divided the pharmacological response to ACh into a nicotinic and a muscarinic response.
We now know that these responses are mediated by nicotinic ACh receptors and muscarinic ACh receptors, respectively.
Nicotinic acetylcholine receptors were found at the neuromuscular junction and the preganglionic (i.e. first) synapses of the sympathetic nervous system and parasympathetic nervous system.
Muscarinic acetylcholine receptors were found at the postganglionic (i.e. second) synapses of the parasympathetic nervous system (e.g. in the iris sphincter muscle; in the pacemaker cells of the heart) and in a variety of brain locations.
Nicotinic Acetylcholine Receptors
The drug nicotine, extracted from tobacco leaves, is an agonist at the receptors which came to be called nicotinic. Nicotine increases the activity of the neuromuscular junction and is therefore an agonist there.
It has been known since antiquity that some species of fish, popularly known as electric eels, can produce large electric shocks that can kill or incapacitate divers. (According to legend, Alessandro Volta was inspired to invent the battery based on the properties of these fish, who carried biological batteries.) These electric currents are generated in an organ called the electroplax. For example, each cell in the electroplax of Torpedo californica (pictured here) can produce 0.15 volts (V), or about 1/10 of the voltage generated by a AA battery. The electroplax contains about 1000 such cells, for a total output of 150 V. About 3000 electrons pass through each nicotinic acetylcholine receptor (nAChR) during the 1 msec it is open. There are 50,000,000,000 (5 x 1010) nAChRs in the Torpedo electroplax. This is such a rich source of protein that the nAChR was the first postsynaptic receptor protein purified by scientists.
Once this pure source of nAChRs was discovered, scientists could characterize the structural properties of the nAChR. The receptor is a pentamer; it consists of five protein chains. The receptors found in adult skeletal muscle and the electroplax consist of 2 α1 receptors and 1 each of the β1, δ, and ε subunits. At the embryonic neuromuscular junction, nAChR have another protein product (designated γ) and are missing the ε subunit in a (α1)2β1γδ configuration.
In neurons, there are nine different gene products forming α subunits and four different gene products forming β subunits. These are designated α2−α10 and β2−β4. Examples of neuronal nAChRs include:
- (α4)3(β2)2
- (α4)2(β2)3
- (α3)2(β4)3
- α4α6β3(β2)2
- (α7)5
Acetylcholine binds to the α-γ and α-δ interfaces of the acetylcholine receptor. Both ACh binding sites must be occupied for the receptor to change shape and allow the passage of cations, including Na+, K+, and Ca2+.
A number of indigenous people in the Caribbean basin use a preparation from the vines Chondrodendron tomentosum (curare vine) and Strychnos species to paralyze and incapacitate animals they were hunting. The Mukusi people of modern-day Guyana gave the preparation its name, wurari. Although the name curare comes from Sir Walter Raleigh’s accounts of explorations in Guyana, the first to characterize the pharmacology of curare (in 1780) was the Tuscan father of neurotoxicology, Abbé Felice Fontana.
The active ingredient, d-tubocurarine, binds to the α-γ and α-δ interfaces of the acetylcholine receptor and blocks the ACh binding site on the α subunit.
The Strychnos genus is the source of several neurotoxins. For example, the tree Strychnos nux-vomica (i.e. “nut causing vomiting”), native to tropical Asia, is the source of strychnine, a poison used to block glycinergic signaling.

In 1963, Chang and Lee isolated α-bungarotoxin from a venomous snake native to Taiwan, the Many-Banded Krait (Bungarus multicinctus). This toxin (shown in blue) binds to the α subunit of the nAChR (part of which is shown in orange) and blocks the ion channel. Therefore, α-bungarotoxin acts as an antagonist of the muscular and neuronal nAChR.
Muscarinic Acetylcholine Receptors
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Fusce nec tincidunt magna, id convallis mauris. Mauris sem tortor, varius non tellus a, pulvinar pulvinar nisl. Pellentesque lobortis, est posuere pulvinar vehicula, augue tellus finibus neque, ut congue mauris ex at metus. Donec ornare nisi bibendum, ornare erat ac, cursus erat. Suspendisse rhoncus, nibh ac suscipit blandit, est est ullamcorper lectus, eu pharetra elit quam eu risus. Interdum et malesuada fames ac ante ipsum primis in faucibus. Donec eu pellentesque tellus. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Curabitur efficitur libero et justo pharetra sodales. Duis rhoncus egestas viverra. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia curae; Fusce eros sem, posuere non mi sit amet, ornare mattis lorem. Maecenas at risus interdum, commodo ligula ac, convallis quam. Curabitur auctor, leo et eleifend interdum, lacus lacus sagittis lectus, sit amet imperdiet ligula libero quis dolor.
Maecenas vitae ullamcorper mauris. Quisque at congue sem. Integer mollis dolor nec fermentum eleifend. Nunc quis velit ligula. Nullam dolor libero, mollis eget leo quis, dignissim volutpat lectus. Aenean quis diam arcu. Donec at facilisis diam, eu facilisis sapien. Morbi ultricies elit felis, eget tempus quam molestie eget. Nulla consectetur tristique ipsum. Mauris nec magna vel metus porta blandit. Curabitur facilisis sodales leo et fringilla. Nunc congue nulla eros, nec ultricies leo tristique a. Etiam consectetur urna urna, in ornare velit consequat sit amet.
Curabitur suscipit elementum lectus sagittis suscipit. Aenean in iaculis tellus. Sed aliquet feugiat elit at sodales. Sed euismod magna quam, in malesuada felis vulputate at. Praesent malesuada volutpat diam et volutpat. Aliquam non vestibulum mauris. Curabitur dictum quam at metus lobortis cursus. Sed lobortis sit amet ligula et rutrum. Ut dignissim risus velit, molestie maximus ex efficitur eu. Phasellus hendrerit nunc arcu. Mauris orci felis, varius eu velit nec, suscipit faucibus nunc. Sed congue nisi vitae consectetur tempus.
Quisque vel quam sed arcu efficitur viverra. Cras id eros pulvinar, rutrum neque eu, fringilla erat. Aenean nibh enim, convallis porta maximus at, aliquet vel neque. Donec efficitur ultricies lacus, ac sollicitudin sapien. Proin vulputate ultrices vulputate. Etiam id eleifend ligula, eget consequat arcu. Fusce eu ipsum interdum, vestibulum nisi vitae, posuere metus.
Fusce et mauris dui. Cras sodales, felis sed sagittis accumsan, ex massa dapibus mi, ut interdum sapien urna vel eros. Vivamus et libero massa. Pellentesque ut massa lorem. Etiam metus leo, egestas id tempus sit amet, varius vel libero. Maecenas sodales eu turpis ac congue. Morbi orci odio, luctus et placerat eu, pellentesque vel purus. Aliquam sit amet venenatis mi. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos himenaeos. Proin efficitur tellus sed dui gravida efficitur. Suspendisse in semper quam, et congue mi. Integer sit amet augue tortor.
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Fusce nec tincidunt magna, id convallis mauris. Mauris sem tortor, varius non tellus a, pulvinar pulvinar nisl. Pellentesque lobortis, est posuere pulvinar vehicula, augue tellus finibus neque, ut congue mauris ex at metus. Donec ornare nisi bibendum, ornare erat ac, cursus erat. Suspendisse rhoncus, nibh ac suscipit blandit, est est ullamcorper lectus, eu pharetra elit quam eu risus. Interdum et malesuada fames ac ante ipsum primis in faucibus. Donec eu pellentesque tellus. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Curabitur efficitur libero et justo pharetra sodales. Duis rhoncus egestas viverra. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia curae; Fusce eros sem, posuere non mi sit amet, ornare mattis lorem. Maecenas at risus interdum, commodo ligula ac, convallis quam. Curabitur auctor, leo et eleifend interdum, lacus lacus sagittis lectus, sit amet imperdiet ligula libero quis dolor.
Maecenas vitae ullamcorper mauris. Quisque at congue sem. Integer mollis dolor nec fermentum eleifend. Nunc quis velit ligula. Nullam dolor libero, mollis eget leo quis, dignissim volutpat lectus. Aenean quis diam arcu. Donec at facilisis diam, eu facilisis sapien. Morbi ultricies elit felis, eget tempus quam molestie eget. Nulla consectetur tristique ipsum. Mauris nec magna vel metus porta blandit. Curabitur facilisis sodales leo et fringilla. Nunc congue nulla eros, nec ultricies leo tristique a. Etiam consectetur urna urna, in ornare velit consequat sit amet.
Curabitur suscipit elementum lectus sagittis suscipit. Aenean in iaculis tellus. Sed aliquet feugiat elit at sodales. Sed euismod magna quam, in malesuada felis vulputate at. Praesent malesuada volutpat diam et volutpat. Aliquam non vestibulum mauris. Curabitur dictum quam at metus lobortis cursus. Sed lobortis sit amet ligula et rutrum. Ut dignissim risus velit, molestie maximus ex efficitur eu. Phasellus hendrerit nunc arcu. Mauris orci felis, varius eu velit nec, suscipit faucibus nunc. Sed congue nisi vitae consectetur tempus.
Quisque vel quam sed arcu efficitur viverra. Cras id eros pulvinar, rutrum neque eu, fringilla erat. Aenean nibh enim, convallis porta maximus at, aliquet vel neque. Donec efficitur ultricies lacus, ac sollicitudin sapien. Proin vulputate ultrices vulputate. Etiam id eleifend ligula, eget consequat arcu. Fusce eu ipsum interdum, vestibulum nisi vitae, posuere metus.
Fusce et mauris dui. Cras sodales, felis sed sagittis accumsan, ex massa dapibus mi, ut interdum sapien urna vel eros. Vivamus et libero massa. Pellentesque ut massa lorem. Etiam metus leo, egestas id tempus sit amet, varius vel libero. Maecenas sodales eu turpis ac congue. Morbi orci odio, luctus et placerat eu, pellentesque vel purus. Aliquam sit amet venenatis mi. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos himenaeos. Proin efficitur tellus sed dui gravida efficitur. Suspendisse in semper quam, et congue mi. Integer sit amet augue tortor.
Destruction of Acetylcholine by Acetylcholinesterase
Maecenas vitae ullamcorper mauris. Quisque at congue sem. Integer mollis dolor nec fermentum eleifend. Nunc quis velit ligula. Nullam dolor libero, mollis eget leo quis, dignissim volutpat lectus. Aenean quis diam arcu. Donec at facilisis diam, eu facilisis sapien. Morbi ultricies elit felis, eget tempus quam molestie eget. Nulla consectetur tristique ipsum. Mauris nec magna vel metus porta blandit. Curabitur facilisis sodales leo et fringilla. Nunc congue nulla eros, nec ultricies leo tristique a. Etiam consectetur urna urna, in ornare velit consequat sit amet.
Curabitur suscipit elementum lectus sagittis suscipit. Aenean in iaculis tellus. Sed aliquet feugiat elit at sodales. Sed euismod magna quam, in malesuada felis vulputate at. Praesent malesuada volutpat diam et volutpat. Aliquam non vestibulum mauris. Curabitur dictum quam at metus lobortis cursus. Sed lobortis sit amet ligula et rutrum. Ut dignissim risus velit, molestie maximus ex efficitur eu. Phasellus hendrerit nunc arcu. Mauris orci felis, varius eu velit nec, suscipit faucibus nunc. Sed congue nisi vitae consectetur tempus.
Quisque vel quam sed arcu efficitur viverra. Cras id eros pulvinar, rutrum neque eu, fringilla erat. Aenean nibh enim, convallis porta maximus at, aliquet vel neque. Donec efficitur ultricies lacus, ac sollicitudin sapien. Proin vulputate ultrices vulputate. Etiam id eleifend ligula, eget consequat arcu. Fusce eu ipsum interdum, vestibulum nisi vitae, posuere metus.
Fusce et mauris dui. Cras sodales, felis sed sagittis accumsan, ex massa dapibus mi, ut interdum sapien urna vel eros. Vivamus et libero massa. Pellentesque ut massa lorem. Etiam metus leo, egestas id tempus sit amet, varius vel libero. Maecenas sodales eu turpis ac congue. Morbi orci odio, luctus et placerat eu, pellentesque vel purus. Aliquam sit amet venenatis mi. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos himenaeos. Proin efficitur tellus sed dui gravida efficitur. Suspendisse in semper quam, et congue mi. Integer sit amet augue tortor.