"

Quantal Release of Neurotransmitter and Evidence for Vesicular Release

Safina Rehman; Kynzie Lalliss; and Jim Hutchins

This is a first draft which has not been edited. If you have questions, or want to help in the writing or editing process, please contact the authors: safinarehman@mail.weber.edu or kynzielalliss@mail.weber.edu or jimhutchins@weber.edu

The Concept of a Synapse

The term synapse, introduced by Sir Charles Sherrington in 1897, stems from the greek “syn” and “haptein” which come together to mean “to clasp”. Sherrington, an english physiologist, is a pioneer in the field of neuroscience famously credited for his work regarding reflexes and the nervous system. While studying the activity of nerve cells, he used the word synapse to describe the gap between two cells which played an important part in how they communicated with each other. This helped shape the understanding neuroscientists have about how neurons transmit information to each other.

Loewi and Vagusstoff (1921)

In 1921, Otto Loewi discovered neurotransmitters, which introduced the idea that cells transmitted information to each other using chemical molecules. Loewi formed this hypothesis by taking two separate frog hearts and observing that by stimulating one, then collecting the fluid of it and applying it to the second, the same effects occurred as if it had also been stimulated. This suggested to him that whatever chemical had been released in the first frog heart when it had been stimulated and then slowed down, was also responsible for causing the slowing of the second heart when exposed to the fluid containing that chemical. Not knowing what this chemical was, he called it “vagustoff”, meaning vagus substance. 

Dale’s Principle

Henry Hallett Dale furthered Loewi’s research, by identifying the vagus substance as the chemical acetylcholine. Dale tested the effects of different chemicals on the vagus nerve which led him to observe that when acetylcholine was injected into the tissue, it mimicked the effects of the slowed heart rate that had been previously observed by Loewi in his experiments. This was a significant discovery because scientist had previously assumed nerves (brain cells) communicated only electrically, not chemically. It was then in 1936, Loewi and Dale were awarded the Nobel Piece Prize for establishing the research of chemical synaptic transmission. It was asserted then that the activity of the nervous system was the result of neurons communicating with each other via chemical messengers.

From his research, Dale proposed that a neuron will release the same neurotransmitter for all of its communication with other neurons. For example, if a neuron releases acetylcholine, it can be assumed that it will not release a different chemical and can then be defined by the chemical it uses to communicate. This hypothesis was called “Dale’s principle”.

 

Hodgkin and Huxley (1952 – 1954)

In 1952 Alan Lloyd Hodgkin and Andrew Fielding Huxley used the squid giant axon, a large nerve fiber in squids, to study how action potentials worked. At the time, it was known that nerve cells could generate electrical signals, but how it happened was still unclear. Hodgkin and Huxley conducted an experiment where they inserted a fine electrode into the axon (cell body) of a squid to measure the electrical potential (voltage) across it. They applied electrical stimuli to the axon and recorded the changes of the membrane’s electrical potential in response to it. During this they discovered that action potentials resulted from the movement of sodium (na+) and potassium (K+) ions. 

Resting potential

Hodgkin and Huxley first measured the potential of the cell body while nothing was happening to it. This was called the resting potential. It was observed that during this the distribution potassium ions were abundant inside the cell and sodium ions were abundant outside.

Depolarization

After they stimulated the neuron, they observed that the membrane potential became more positive. This was a process called depolarization. This occurred due to the voltage-gated proteins embedded in the cell opening up and allowing for the sodium ions outside of it to rush in. Sodium ions, having a positive charge, increased the electrical potential of the cell and made the resting potential rise.

Re-polarization

After the electrical potential of the cell rose to its highest point, the channels that allowed sodium in closed, and channels that only allowed potassium through them, opened. This made for potassium to flow out of the cell and lower the electrical charge back to what it was at it’s resting potential.

All-or-Nothing Principle

This experiment showed that action potentials follow an all-or-nothing principle, meaning once the electrical potential of a neuron rose to it’s highest point, the action potential occurred all at once, this way due to the way the opening and closing of the embedded proteins in the cell body worked.

 

 

The Chemical Synapse

Chemical Synapse  

Diagram of communication between neurons.

The “chemical synapse” is the phrase used to describe the gap between two cells, where the transmission of neurotransmitters from one cell to another happens at. Located at the end of the cell body is the presynaptic terminal of a chemical synapse. Located here specifically are voltage gated calcium channels which open as a result of an action potential arriving after it has traveled down the neuron. Since there is no calcium in the cell, diffusion makes for the positively charged calcium outside to flow in. After calcium enters the cell, a process happens where neurotransmitters are released from synaptic vesicles which are tiny sac-like organelles that have a lipid bilayer membrane like cells do. This process occurs when calcium binds to coil like structures called SNARE proteins. These proteins attach to both the membrane of the vesicle and the cell, and twists. This fuses the two membranes together to the extent that the vesicle opens up and dumps the neurotransmitters all at once into the synaptic cleft. After the neurotransmitters are dumped into the synapse (synaptic cleft), it binds to the receptors on the following postsynaptic cell. These receptors are embedded in the branch like structures called dendrites, and when filled by neurotransmitters, it causes the signaling of proteins in the cell body such as sodium and potassium channels to open, repeating the process of the action potential traveling down the neuron and causing neurotransmitter release to happen once again.

The Quantal Hypothesis (1952)

Fatt & Katz (1952):

The idea that neurotransmitters were released in same-size “bundles” called quanta, was introduced by Bernard Katz in 1952. Katz formulated the quantal hypothesis, which is essential to our current understanding of how neurotransmitters are released from the presynaptic terminal. In this hypothesis, Katz proposed that neurotransmitters are released from presynaptic terminals not in a continuous flow, but in separate packets  or “quanta”.

https://link.springer.com/referenceworkentry/10.1007/978-3-540-29678-2_2867

 

del Castillo and Katz 1954

Katz used a frog neuromuscular junction, where he was specifically looking at synapses used for motor neurons communicating with muscle fibers, to observe changes in electrical potential of the postsynaptic neuron. The changes to the postsynaptic neuron are called EPP (End Plate Potential), which represent the change in electrical potential of the post synaptic membrane as a result. He then reduced the extracellular calcium and stimulated the presynaptic cell by injecting a bit of current and just waited for spontaneous.

The Neuromuscular Junction

Diagram of the neuromuscular junction.Circa 1950 physiologists knew that there were end-plate potentials in muscles (postsynaptic) at the NMJ

End-plate potentials are the NMJ equivalent of an EPSP.

Cras eros ligula, pellentesque vitae rhoncus vitae, posuere ac lectus. Cras et ante vel urna facilisis sodales nec a justo. Aliquam vitae neque dui. Integer posuere imperdiet sem vitae vestibulum. Pellentesque quis metus sed mi semper dapibus at id magna. Donec augue sapien, eleifend eget blandit eget, ultrices sit amet leo. Nam sed pellentesque libero. Etiam pulvinar rutrum mattis. Vestibulum in aliquet eros. Sed ut risus ullamcorper, ullamcorper eros non, suscipit odio. Duis molestie, risus id suscipit semper, libero leo pharetra nibh, in dignissim libero metus a augue. Donec id augue ut velit semper rutrum. Praesent sem ligula, eleifend et sem a, vehicula efficitur felis. Ut elementum tempus sem. Praesent mollis placerat lacus, vel posuere mi cursus eget.

Donec pretium magna venenatis molestie tristique. Mauris placerat velit id felis blandit luctus. Etiam ac volutpat risus, at viverra dui. Aliquam erat volutpat. Cras vel arcu a sem dignissim tempus. Etiam sed scelerisque tellus. Sed luctus est facilisis risus tempus, non facilisis augue tincidunt. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos himenaeos.

Proin mollis, magna in luctus gravida, metus dui feugiat lorem, nec convallis risus felis vel mi. Maecenas rhoncus volutpat tristique. Vestibulum ut sem non est finibus mattis. Suspendisse ultrices, erat vel placerat ullamcorper, enim lectus ornare eros, id tristique tortor justo sed magna. Curabitur mattis tristique elementum. Maecenas fringilla elit quis magna sollicitudin, eget tempus neque placerat. In volutpat metus in euismod elementum. Etiam faucibus ornare nunc sed auctor. Nullam id ultrices felis. Morbi finibus sapien vitae laoreet viverra. Integer sollicitudin est et nisi hendrerit pulvinar. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas.

Cras eros ligula, pellentesque vitae rhoncus vitae, posuere ac lectus. Cras et ante vel urna facilisis sodales nec a justo. Aliquam vitae neque dui. Integer posuere imperdiet sem vitae vestibulum. Pellentesque quis metus sed mi semper dapibus at id magna. Donec augue sapien, eleifend eget blandit eget, ultrices sit amet leo. Nam sed pellentesque libero. Etiam pulvinar rutrum mattis. Vestibulum in aliquet eros. Sed ut risus ullamcorper, ullamcorper eros non, suscipit odio. Duis molestie, risus id suscipit semper, libero leo pharetra nibh, in dignissim libero metus a augue. Donec id augue ut velit semper rutrum. Praesent sem ligula, eleifend et sem a, vehicula efficitur felis. Ut elementum tempus sem. Praesent mollis placerat lacus, vel posuere mi cursus eget.

Donec pretium magna venenatis molestie tristique. Mauris placerat velit id felis blandit luctus. Etiam ac volutpat risus, at viverra dui. Aliquam erat volutpat. Cras vel arcu a sem dignissim tempus. Etiam sed scelerisque tellus. Sed luctus est facilisis risus tempus, non facilisis augue tincidunt. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos himenaeos.

Proin mollis, magna in luctus gravida, metus dui feugiat lorem, nec convallis risus felis vel mi. Maecenas rhoncus volutpat tristique. Vestibulum ut sem non est finibus mattis. Suspendisse ultrices, erat vel placerat ullamcorper, enim lectus ornare eros, id tristique tortor justo sed magna. Curabitur mattis tristique elementum. Maecenas fringilla elit quis magna sollicitudin, eget tempus neque placerat. In volutpat metus in euismod elementum. Etiam faucibus ornare nunc sed auctor. Nullam id ultrices felis. Morbi finibus sapien vitae laoreet viverra. Integer sollicitudin est et nisi hendrerit pulvinar. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas.

De Robertis and Bennett, 1955 and Palade and Palay 1954

Electron microscopy of the synapse (we have vesicles, but what are they for?)

Electron microscopy (EM) is a way of looking at the synapse using an electron microscope which has about 2000 times more resolution than a light microscope and it allows for what is being examined to be magnified 100,000 times. This allowed scientists to see that the synapse had vesicles in which neurotransmitters were stored and released.

Vesicles

Diagram showing the process of exocytosis in neurons.

Exocytosis is the natural process through which molecules are transported from within a cell to the outside space of it. There are multiple different forms of exocytosis, but this chapter will focus on vesicular exocytosis. Vesicular exocytosis occurs when vesicles fuse with a cell’s plasma membrane to release their contents outside the cell. It is a form of active transport that allows a cell to move large molecules from within the cell to the exterior. This type of exocytosis is only found in bacteria and occurs through the involvement of lysosomes that help in membrane fusion.

Freeze-fracture electron microscopy of vesicles.A vesicle is a division within a cell that is formed by a lipid bilayer that separates its contents from the cell’s cytoplasm or extracellular fluid. These form naturally during processes of exocytosis, endocytosis, and the transportation of materials in the plasma membrane. Vesicles perform several different functions, mainly transporting materials and recycling waste. Additionally, they also absorb and dispose of toxic substances and pathogens within the cell to prevent cell damage and/or death.

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nam semper dui eget gravida varius. Ut varius risus nunc, in varius urna fermentum a. Sed risus odio, ullamcorper sit amet faucibus nec, condimentum sit amet arcu. Cras elit sem, semper et aliquet fringilla, dictum nec nibh. Interdum et malesuada fames ac ante ipsum primis in faucibus. Mauris vel nisl pretium, varius lorem cursus, cursus nulla. In eu nisi non augue bibendum posuere. Proin mollis eleifend mi, at vestibulum ipsum eleifend nec. Fusce id massa quis orci sollicitudin pulvinar. Donec ante dui, scelerisque sit amet velit et, iaculis pharetra orci. Morbi lobortis purus neque, et lacinia ipsum aliquam at.

Transmission electron micrograph of vesicles in the cell.Suspendisse auctor, sapien eget ultrices auctor, velit leo blandit tellus, iaculis volutpat felis neque vitae augue. Aenean eu enim in odio consectetur tristique. Sed massa est, condimentum et dui at, ultricies iaculis leo. Praesent nulla metus, pulvinar vehicula ex nec, dictum tempor libero. Nunc accumsan et quam sed porttitor. Sed risus ipsum, vestibulum a quam et, ultrices rutrum ex. Duis non felis eget nunc luctus suscipit non in massa. Etiam dictum eget ipsum ut pellentesque. In nec augue ac tellus finibus vestibulum. Suspendisse sit amet nulla erat. Aliquam interdum aliquet nulla, non sagittis felis rutrum a. Donec quis dolor mauris. Suspendisse at orci non urna cursus scelerisque. Duis in vehicula nibh. Aliquam mollis bibendum suscipit. Etiam posuere neque et enim vehicula, et commodo eros pretium.

Cras eros ligula, pellentesque vitae rhoncus vitae, posuere ac lectus. Cras et ante vel urna facilisis sodales nec a justo. Aliquam vitae neque dui. Integer posuere imperdiet sem vitae vestibulum. Pellentesque quis metus sed mi semper dapibus at id magna. Donec augue sapien, eleifend eget blandit eget, ultrices sit amet leo. Nam sed pellentesque libero. Etiam pulvinar rutrum mattis. Vestibulum in aliquet eros. Sed ut risus ullamcorper, ullamcorper eros non, suscipit odio. Duis molestie, risus id suscipit semper, libero leo pharetra nibh, in dignissim libero metus a augue. Donec id augue ut velit semper rutrum. Praesent sem ligula, eleifend et sem a, vehicula efficitur felis. Ut elementum tempus sem. Praesent mollis placerat lacus, vel posuere mi cursus eget.

Donec pretium magna venenatis molestie tristique. Mauris placerat velit id felis blandit luctus. Etiam ac volutpat risus, at viverra dui. Aliquam erat volutpat. Cras vel arcu a sem dignissim tempus. Etiam sed scelerisque tellus. Sed luctus est facilisis risus tempus, non facilisis augue tincidunt. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos himenaeos.

Proin mollis, magna in luctus gravida, metus dui feugiat lorem, nec convallis risus felis vel mi. Maecenas rhoncus volutpat tristique. Vestibulum ut sem non est finibus mattis. Suspendisse ultrices, erat vel placerat ullamcorper, enim lectus ornare eros, id tristique tortor justo sed magna. Curabitur mattis tristique elementum. Maecenas fringilla elit quis magna sollicitudin, eget tempus neque placerat. In volutpat metus in euismod elementum. Etiam faucibus ornare nunc sed auctor. Nullam id ultrices felis. Morbi finibus sapien vitae laoreet viverra. Integer sollicitudin est et nisi hendrerit pulvinar. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas.

The presence of calcium ions (Ca2+) is important for exocytosis to occur. Several experiments have shown that an increase in extracellular or manipulation of intracellular calcium levels affects exocytosis, either inhibiting or promoting it. Studies using calcium chelators or channel blockers also provides evidence for vesicular exocytosis and its dependency on calcium ion levels.

Patch-clamp and Electrophysiological Studies

Patch-clamp and electrophysiological experiments in neurons have provided data that there are rapid changes in membrane potential that are associated with vesicle fusion and release. This study technique allows researchers to study ionic currents in cells, tissues, and patches of cell membrane, and directly measures membrane potentials. The dynamic nature of exocytosis is revealed with these studies, as well as evidence for the quantal release of neurotransmitters.

SNARE (soluble NSF attachments protein receptor) proteins, such as syntaxin, SNAP-25, and VAMP, are essential for the process of exocytosis and provide support for the concept on a molecular level. These proteins are the mediators for vesicle docking and fusion with a cell’s plasma membrane. When these proteins are tampered with and their function is disrupted, exocytosis is affected and inhibited.

 

https://link.springer.com/referenceworkentry/10.1007/978-3-540-29678-2_2867

 

Boyd and Martin (1956)

 

 

Histogram showing the distribution of spontaneous end-plate potentials is a good fit to the predicted Poisson distribution.
Boyd and Martin (1956) measured the size of spontaneous end-plate potentials in cat skeletal muscle. Each vesicle released causes a depolarization of 0.4 mV. The number of vesicles released each time the motor neuron is stimulated is a good fit to the Poisson distribution (red line).

Boyd and Martin (1956)

 

del Castillo and Katz 1954

https://link.springer.com/referenceworkentry/10.1007/978-3-540-29678-2_2867

https://pmc.ncbi.nlm.nih.gov/articles/PMC1363540/?page=10

 

https://pubmed.ncbi.nlm.nih.gov/38256/

 

 

 

 

Capturing Vesicles Mid-Fusion

John Heuser and Tom Reese (1973)

Studies have found that vesicular exocytosis involves the formation of a temporary fusion pore. These pores span the membrane of both the vesicle and the plasma membranes and help to complete the fusion of the vesicle and cell membranes. Materials in a vesicle can also be released through these pores before the vesicle experiences full fusion with the membrane.

 

https://www.researchgate.net/publication/18816723_Evidence_for_Recycling_of_Synaptic_Vesicle_Membrane_During_Transmitter_Release_at_the_Frog_Neuromuscular_Junction/link/0deec51b632d2c1ce0000000/download

 

Specializations Associated with Vesicles

SNARE proteins

Mutations in these proteins cause alterations in synaptic release

? Low-calcium solutions slow the rate of neurotransmitter

Ribbon synapses

Transmission electron micrograph of synapses between photoreceptors and bipolar and horizontal cells in the larval salamander retina.Electron Microscopy (EM) is a technique used to obtain high resolution images of biological and non-biological specimens. Researchers use this method to observe cells and their complex structures, utilizing electrons as the source of illumination to produce these detailed images. During studies of vesicles, observations made with EM provides direct evidence of vesicular exocytosis, as it shows detailed visualization of vesicles fusing with the cell membrane and releasing its contents into the extracellular space.

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Proin tincidunt elit libero, a semper lectus porta at. Quisque et libero finibus, sagittis mauris in, auctor metus. Vivamus faucibus leo nunc, ac dignissim ligula tempor a. Vestibulum ligula leo, faucibus et justo ut, rhoncus accumsan neque. Nunc mollis quam ut interdum iaculis. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos himenaeos. Morbi laoreet commodo est, vel fermentum sapien auctor eget. Praesent turpis metus, convallis consectetur felis quis, vulputate scelerisque turpis. Quisque eget vestibulum risus, in ultrices orci. Nulla vehicula mi vitae leo porttitor congue. Quisque finibus luctus tortor non efficitur. Fusce sit amet eros ex.

Maecenas elit tellus, consectetur quis purus vel, facilisis euismod arcu. Orci varius natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Donec vitae pellentesque magna, id efficitur erat. Etiam eget nulla eget urna fringilla luctus dictum ac dolor. Curabitur eu justo congue, blandit velit auctor, luctus eros. Etiam vel risus et eros semper mollis. Curabitur non ultrices urna, quis viverra eros. Proin purus nibh, porttitor rhoncus ornare eget, interdum in lorem. Cras euismod non neque in volutpat. Morbi vel egestas odio, a pulvinar mi. Fusce in ligula quam. Fusce maximus lorem arcu, ut tempus leo ultrices vitae. Phasellus sit amet luctus velit. Proin rhoncus porttitor enim, non ullamcorper ex varius efficitur. Nullam aliquet porttitor convallis. Fusce tristique metus ex, dignissim pulvinar urna ornare placerat.

Praesent dapibus fringilla ante, et dapibus sapien porta et. Aliquam erat volutpat. Phasellus porttitor nulla in purus ornare, in sagittis lorem tincidunt. Ut dapibus elit ante, in consectetur odio scelerisque et. Suspendisse varius ligula mi, sed egestas turpis interdum ut. Nulla lorem nibh, feugiat non fermentum vitae, sodales id nulla. Donec rutrum luctus lectus, eget venenatis tellus aliquet non. Maecenas id dignissim mi. Vivamus imperdiet molestie ex, sed posuere ex. Integer mattis hendrerit bibendum. Nulla hendrerit tincidunt arcu sed tincidunt. Phasellus feugiat a nisi eget sodales. Suspendisse in pharetra odio, quis posuere magna. Nam pulvinar tincidunt tempor. Nam posuere est sit amet mi rhoncus mattis.

Nam in eros non libero rutrum malesuada. Vivamus id ex purus. Duis nec pellentesque metus. Curabitur iaculis tempus dolor a vestibulum. Sed rhoncus lectus tristique turpis vulputate varius. Mauris sagittis ipsum vel ipsum pulvinar tristique. Etiam elit tellus, rutrum eu est vel, condimentum mollis felis. Mauris ornare eros eu lorem imperdiet lacinia. Suspendisse arcu orci, sollicitudin vel nisl sed, tempus rhoncus augue. Nulla maximus sed ipsum ac bibendum. Ut posuere aliquet elit id bibendum. In suscipit vehicula ex ut interdum. Morbi mollis nisl venenatis lacus lacinia, sed dignissim enim vulputate. Integer aliquet libero eget dui vehicula rhoncus.

Diagram showing how ribbon synapses allow for huge bursts of neurotransmitter release.Maecenas quam neque, venenatis in dapibus vel, aliquam sit amet arcu. Quisque eu tellus vehicula quam euismod aliquam. Quisque porttitor metus eget neque euismod tristique. Morbi aliquet lectus eget tortor convallis, a maximus elit tristique. Aenean mattis arcu vel nisi tempor, ut rutrum ante mollis. Nulla molestie euismod magna tristique faucibus. Quisque ultricies eros ac massa finibus egestas. Proin a aliquet nunc. Nunc a pretium urna. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. In sodales felis a massa egestas finibus. Maecenas sed venenatis massa.

Radioactive Labeling

Diagram showing how radioactive labels can be used to localize neurotransmitter to vesicles.

Researchers have used labeling techniques, specifically radioactive labeling, to trace the release of molecules during exocytosis. When using this type of imaging technique, researchers can see the tagged neurotransmitters moving between the inside of the vesicle space to the outside extracellular space. Further studies using fluorescent and radioactive tagging allows for real-time observation of both vesicle movement and fusion with the plasma membrane.

 

Electrochemical Measurements

This image is copyrighted and must be replaced.

 

 

Electrochemical measurements, specifically amperometry, have been used to study vesicular movement and exocytosis. Amperometry measures the electrical currents that are generated when neurotransmitters are released from vesicles during exocytosis. The measurement of these currents is found by using a carbon fiber electrode in a solution. It applies a constant potential to collect data on changes in electrical currents in a cell.

https://pmc.ncbi.nlm.nih.gov/articles/PMC5748430/

 

 

https://pmc.ncbi.nlm.nih.gov/articles/PMC3064517/

 

https://www.sciencedirect.com/science/article/pii/S0959438896801206

 

Measurement of Membrane Capacitance

Illustration showing how an increase in membrane surface area with vesicle fusion increases the membrane capacitance.

 

There is a stepwise increase in membrane capacitance with the fusion of each vesicle Klyachko and Jackson (2002).

Diagram showing how the increase in membrane capacitance with the fusion of each vesicle can be measured.

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nam semper dui eget gravida varius. Ut varius risus nunc, in varius urna fermentum a. Sed risus odio, ullamcorper sit amet faucibus nec, condimentum sit amet arcu. Cras elit sem, semper et aliquet fringilla, dictum nec nibh. Interdum et malesuada fames ac ante ipsum primis in faucibus. Mauris vel nisl pretium, varius lorem cursus, cursus nulla. In eu nisi non augue bibendum posuere. Proin mollis eleifend mi, at vestibulum ipsum eleifend nec. Fusce id massa quis orci sollicitudin pulvinar. Donec ante dui, scelerisque sit amet velit et, iaculis pharetra orci. Morbi lobortis purus neque, et lacinia ipsum aliquam at.

Suspendisse auctor, sapien eget ultrices auctor, velit leo blandit tellus, iaculis volutpat felis neque vitae augue. Aenean eu enim in odio consectetur tristique. Sed massa est, condimentum et dui at, ultricies iaculis leo. Praesent nulla metus, pulvinar vehicula ex nec, dictum tempor libero. Nunc accumsan et quam sed porttitor. Sed risus ipsum, vestibulum a quam et, ultrices rutrum ex. Duis non felis eget nunc luctus suscipit non in massa. Etiam dictum eget ipsum ut pellentesque. In nec augue ac tellus finibus vestibulum. Suspendisse sit amet nulla erat. Aliquam interdum aliquet nulla, non sagittis felis rutrum a. Donec quis dolor mauris. Suspendisse at orci non urna cursus scelerisque. Duis in vehicula nibh. Aliquam mollis bibendum suscipit. Etiam posuere neque et enim vehicula, et commodo eros pretium.

Cras eros ligula, pellentesque vitae rhoncus vitae, posuere ac lectus. Cras et ante vel urna facilisis sodales nec a justo. Aliquam vitae neque dui. Integer posuere imperdiet sem vitae vestibulum. Pellentesque quis metus sed mi semper dapibus at id magna. Donec augue sapien, eleifend eget blandit eget, ultrices sit amet leo. Nam sed pellentesque libero. Etiam pulvinar rutrum mattis. Vestibulum in aliquet eros. Sed ut risus ullamcorper, ullamcorper eros non, suscipit odio. Duis molestie, risus id suscipit semper, libero leo pharetra nibh, in dignissim libero metus a augue. Donec id augue ut velit semper rutrum. Praesent sem ligula, eleifend et sem a, vehicula efficitur felis. Ut elementum tempus sem. Praesent mollis placerat lacus, vel posuere mi cursus eget.

Donec pretium magna venenatis molestie tristique. Mauris placerat velit id felis blandit luctus. Etiam ac volutpat risus, at viverra dui. Aliquam erat volutpat. Cras vel arcu a sem dignissim tempus. Etiam sed scelerisque tellus. Sed luctus est facilisis risus tempus, non facilisis augue tincidunt. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos himenaeos.

Proin mollis, magna in luctus gravida, metus dui feugiat lorem, nec convallis risus felis vel mi. Maecenas rhoncus volutpat tristique. Vestibulum ut sem non est finibus mattis. Suspendisse ultrices, erat vel placerat ullamcorper, enim lectus ornare eros, id tristique tortor justo sed magna. Curabitur mattis tristique elementum. Maecenas fringilla elit quis magna sollicitudin, eget tempus neque placerat. In volutpat metus in euismod elementum. Etiam faucibus ornare nunc sed auctor. Nullam id ultrices felis. Morbi finibus sapien vitae laoreet viverra. Integer sollicitudin est et nisi hendrerit pulvinar. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas.

 

 

License

Developing Expertise in Neuroscience Copyright © by Jim Hutchins; Aliyah Grijalva; Avalon Marker; Canyon Madsen; Kobe Christensen; Lance Castro; Lindsey Aune; Caleb Bevan; Ryan Johnson; Misty Allen; and Tess Johnson. All Rights Reserved.